Pat O'Sullivan

Mh4714 Week 4

Week 4

0.0.1 Decimals, Sequences and the Rational Numbers.

- Recall that a rational number is by definition a ratio of two integers. The set \mathbb{Q} of rational numbers is defined to be the set:

$$
\left\{\frac{a}{b}: a \in \mathbb{Z}, b \in \mathbb{Z} \backslash\{0\}\right\}
$$

It is clear that a finite decimal is a rational number: $0 . d_{1} d_{2} \ldots d_{n}=$ $\frac{d_{1} d_{2} \ldots d_{n}}{10^{n}}$.
An infinite recurring decimal is a Geometric series which we can now see also converges to a rational number:

$$
\begin{gathered}
\qquad 0 . d_{1} d_{2} d_{3} \ldots d_{n} d_{1} d_{2} \ldots d_{n} d_{1} \ldots \\
=\left(\frac{d_{1}}{10}+\frac{d_{2}}{10^{2}}+\cdots+\frac{d_{n}}{10^{n}}\right)+\left(\frac{d_{1}}{10^{n+1}}+\frac{d_{2}}{10^{n+2}}+\cdots+\frac{d_{n}}{10^{2 n}}\right)+\ldots \\
=\frac{d_{1} d_{2} d_{3} \ldots d_{n}}{10^{n}}+\frac{d_{1} d_{2} d_{3} \ldots d_{n}}{10^{2 n}}+\ldots \\
\text { which is a geometric series converging to } \frac{\frac{d_{1} d 2 \ldots d_{n}}{10^{n}}}{1-10^{n}}=\frac{d_{1} d 2 \ldots d_{n}}{10^{n}-1} .
\end{gathered}
$$

Example 0.1

The infinite decimal $0.45 \dot{5} 1 \dot{7}$ converges to $0.45+\frac{1}{100} \frac{\frac{517}{1000}}{1-\frac{1}{1000}}=\frac{45}{100}+\frac{517}{99900}$

We can call a decimal like this an ultimately recurring infinite decimal.

A finite decimal $0 . d_{1} d_{2} \ldots d_{n}$ can also be thought of as the ultimately recurring infinite decimal
$0 . d_{1} d_{2} \ldots d_{n} \dot{0}$
What we call ultimately recurring infinite decimals are frequently also called simply infinite recurring decimals.

If an infinite decimal $0 . d_{1} d_{2} \ldots$ converges to a number r we simply write $0 . d_{1} d_{2} \cdots=r$.

- Conversely, given any rational number, we can find an infinite decimal that converges to it.

We can use the "school" method of dividing a denominator into a numerator:

Example 0.2

Looking at the process this way we can easily see that the decimal which we arrive at for any rational number $\frac{a}{b}, a, b \in \mathbb{N}$ must always be either finite or (ultimately) infinitely recurring because the only possible remainders on division by b are $0,1,2, \ldots b-1$. If we get remainder 0 at any stage then the process terminates and we get a finite decimal. Otherwise a remainder musr recur after at most $b-1$ divisions and once a remainder recurs then
the digits in the decimal begin to recur.

Instead of using the 'school method', we can arrive at the same decimal expansion for a rational number in a more transparent manner as follows:
(i) We first determine how many $\frac{1}{10}$'s "fit into" $\frac{1}{7}$

Let d_{1} be the largest integer such that

$$
\frac{d_{1}}{10} \leq \frac{1}{7} \Rightarrow d_{1} \leq \frac{10}{7}=1 \frac{3}{7} \Rightarrow d_{1}=1
$$

That is,

$$
\frac{1}{7}=\left(1+\frac{3}{7}\right) \times \frac{1}{10}=1 \times \frac{1}{10}+\frac{3}{7} \times \frac{1}{10}=1 \times \frac{1}{10}+\frac{3}{70}
$$

(ii) We now determine how many $\frac{1}{10^{2}}$'s "fit into" the left over piece $\frac{3}{70}$. Therefore let d_{2} be the largest integer such that

$$
\frac{d_{2}}{10^{2}} \leq \frac{3}{70} \Rightarrow d_{1} \leq \frac{30}{7}=4 \frac{2}{7} \Rightarrow d_{1}=4
$$

That is,

$$
\frac{1}{7}=\frac{1}{10}+\left(4+\frac{2}{7}\right) \times \frac{1}{10^{2}}=\frac{1}{10}+\frac{4}{10^{2}}+\frac{2}{700}
$$

(iii) We now determine how many $\frac{1}{10^{3}}$'s "fit into" the left over piece $\frac{2}{700}$ and so on.
(iv) The 'left over piece' is getting arbitrarily small as we proceed and so we are constructing an infinite decimal which is converging to $\frac{1}{7}$.

Note that the above process is exactly parallel to the school method illustrated first.

- It is possible that two different decimals can converge to the same number.

Example 0.3

$$
0.1 \dot{9}=0.1+0.099999 \cdots=0.1+\frac{9}{10^{2}}+\frac{9}{10^{3}}+\frac{9}{10^{4}}+\ldots
$$

$$
=0.1+\frac{\frac{9}{10^{2}}}{1-\frac{1}{10}}=0.1+0.1=0.2
$$

But it is only by this phenomenon of repeating 9's that we can get two different decimals converging to the same number.
If we ban infinitely repeating 9 's then every rational number has a unique decimal representation.
0.0.1.1 Real numbers v. Rational numbers. We see that every finite and every infinite recurring decimal is a rational number and every rational number equals either a finite or infinite recurring decimal.

It follows therefore that an infinite non-recurring decimal does not converge to a rational number.

Example 0.4

The infinite non-recurring decimal

$$
\sum_{k=1}^{\infty} \frac{1}{10^{\frac{k(k+1)}{2}}}=0.101001000100001 \ldots
$$

does not converge to a rational number.

The irrational numbers are therefore called into existence by adding one more axiom to the axioms defining the rational numbers:

Completeness Axiom for Real Numbers: Every infinite decimal converges to a real number.

Example 0.5

The Completeness example guarantees that there is a real number which is the limit of the decimal

$$
0.101001000100001 \ldots
$$

That is, there is some real number, call it r such that

$$
r=0.101001000100001 \ldots
$$

