
Pat O’Sullivan

Mh4714 Week 4



Week 4

0.0.1 Decimals, Sequences and the Rational Numbers.

• Recall that a rational number is by definition a ratio of two integers. The set

Q of rational numbers is defined to be the set:
{a

b
: a ∈ Z, b ∈ Z \ {0}

}

It is clear that a finite decimal is a rational number: 0.d1d2 . . . dn =
d1d2 . . . dn

10n
.

An infinite recurring decimal is a Geometric series which we can now see also

converges to a rational number:

0.d1d2d3 . . . dnd1d2 . . . dnd1 . . .

=

(

d1

10
+

d2

102
+ · · ·+

dn

10n

)

+

(

d1

10n+1
+

d2

10n+2
+ · · ·+

dn

102n

)

+ . . .

=
d1d2d3 . . . dn

10n
+

d1d2d3 . . . dn

102n
+ . . .

which is a geometric series converging to

d1d2 . . . dn
10n

1− 10n
=

d1d2 . . . dn
10n − 1

.

Example 0.1

The infinite decimal 0.45
.

5
.

1
.

7 converges to 0.45+
1

100

517

1000

1−
1

1000

=
45

100
+

517

99900

1
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We can call a decimal like this an ultimately recurring infinite decimal.

A finite decimal 0.d1d2 . . . dn can also be thought of as the ultimately recur-

ring infinite decimal

0.d1d2 . . . dn
.

0

What we call ultimately recurring infinite decimals are frequently also called

simply infinite recurring decimals.

If an infinite decimal 0.d1d2 . . . converges to a number r we simply write

0.d1d2 · · · = r.

• Conversely, given any rational number, we can find an infinite decimal that

converges to it.

We can use the “school” method of dividing a denominator into a numerator:

Example 0.2

7 1 b 0 0 0 0 0 0 0 . . . . . .

0 b 1 4 2 8 5 7 1 . . . . . .
1 3 2 6 4 5 1

Looking at the process this way we can easily see that the decimal which

we arrive at for any rational number
a

b
, a, b ∈ N must always be either finite

or (ultimately) infinitely recurring because the only possible remainders on

division by b are 0, 1, 2, . . . b − 1. If we get remainder 0 at any stage then

the process terminates and we get a finite decimal. Otherwise a remainder

musr recur after at most b − 1 divisions and once a remainder recurs then
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the digits in the decimal begin to recur.

Instead of using the ’school method’, we can arrive at the same decimal ex-

pansion for a rational number in a more transparent manner as follows:

(i) We first determine how many
1

10
’s “fit into”

1

7
Let d1 be the largest integer such that

d1

10
≤

1

7
⇒ d1 ≤

10

7
= 1 3

7
⇒ d1 = 1.

That is,

1

7
=

(

1 +
3

7

)

×
1

10
= 1×

1

10
+

3

7
×

1

10
= 1×

1

10
+

3

70

(ii) We now determine how many
1

102
’s “fit into” the left over piece

3

70
.

Therefore let d2 be the largest integer such that

d2

102
≤

3

70
⇒ d1 ≤

30

7
= 4 2

7
⇒ d1 = 4.

That is,

1

7
=

1

10
+

(

4 +
2

7

)

×
1

102
=

1

10
+

4

102
+

2

700
.

(iii) We now determine how many
1

103
’s “fit into” the left over piece

2

700
and so on.

(iv) The ’left over piece’ is getting arbitrarily small as we proceed and so

we are constructing an infinite decimal which is converging to
1

7
.

Note that the above process is exactly parallel to the school method illus-

trated first.

• It is possible that two different decimals can converge to the same number.

Example 0.3

0.1
.

9 = 0.1 + 0.099999 · · · = 0.1 +
9

102
+

9

103
+

9

104
+ . . .
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= 0.1 +
9

102

1− 1

10

= 0.1 + 0.1 = 0.2

But it is only by this phenomenon of repeating 9’s that we can get two

different decimals converging to the same number.

If we ban infinitely repeating 9’s then every rational number has a unique

decimal representation.

0.0.1.1 Real numbers v. Rational numbers. We see that every finite and ev-

ery infinite recurring decimal is a rational number and every rational number

equals either a finite or infinite recurring decimal.

It follows therefore that an infinite non-recurring decimal does not converge to

a rational number.

Example 0.4

The infinite non-recurring decimal

∞
∑

k=1

1

10
k(k+1)

2

= 0.101001000100001 . . .

does not converge to a rational number.

The irrational numbers are therefore called into existence by adding one more

axiom to the axioms defining the rational numbers:

Completeness Axiom for Real Numbers: Every infinite decimal converges

to a real number.

Example 0.5

The Completeness example guarantees that there is a real number which is the

limit of the decimal

0.101001000100001 . . .

That is, there is some real number, call it r such that

r = 0.101001000100001 . . .


